this post was submitted on 22 Nov 2023
1 points (100.0% liked)
Machine Learning
1 readers
1 users here now
Community Rules:
- Be nice. No offensive behavior, insults or attacks: we encourage a diverse community in which members feel safe and have a voice.
- Make your post clear and comprehensive: posts that lack insight or effort will be removed. (ex: questions which are easily googled)
- Beginner or career related questions go elsewhere. This community is focused in discussion of research and new projects that advance the state-of-the-art.
- Limit self-promotion. Comments and posts should be first and foremost about topics of interest to ML observers and practitioners. Limited self-promotion is tolerated, but the sub is not here as merely a source for free advertisement. Such posts will be removed at the discretion of the mods.
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
My tactic is to start by checking the papers that actually GET IN to major conferences (Neurips, ICLR, ICML are a good start). This narrows the search considerably. Doing a Google scholar search, for example, will just yield an insurmountable number of papers. This is, in part, due to the standard "make public before it is accepted" methodology (arXiV preprints are fantastic but they also increase the noise level dramatically).
Now, having been burnt by the chaos of the review processes of the aforementioned conferences, I am certainly aware that their publications are by no means the "Gold standard" but the notion of peer review, including the intended outcomes of improvement therethrough, is powerful nonetheless.
That helps narrow it down. Though, many discoveries are not published anymore. Reminds me of Mikolov, who was rejected pretty much everywhere and word vectors ended up being such a big deal. Or that OpenAI does not publish their models.