this post was submitted on 21 Jan 2024
250 points (97.7% liked)
Technology
59446 readers
4138 users here now
This is a most excellent place for technology news and articles.
Our Rules
- Follow the lemmy.world rules.
- Only tech related content.
- Be excellent to each another!
- Mod approved content bots can post up to 10 articles per day.
- Threads asking for personal tech support may be deleted.
- Politics threads may be removed.
- No memes allowed as posts, OK to post as comments.
- Only approved bots from the list below, to ask if your bot can be added please contact us.
- Check for duplicates before posting, duplicates may be removed
Approved Bots
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
Wouldn't RAM on die mean lower wafer yield?
This is about RAM on the package not RAM on the die. It honestly makes no sense why we don't have CPUs and RAM soldered to the motherboard right next to the CPU package. I love being able to change the stuff myself, but any reasonable repair shop could be doing that for you and we can have much higher performance than we currently have. It's not like there's really many viable options anyways. AMD has what four good CPUs intel has like two, and there's two good ram ICS.
Why would you think soldering would increase performance vs socketed at all much less provide "much higher performance"
If soldered was the only option ans 6 skud was enough for everyone everyone would have to buy very expensive hardware to increase one spec instead of smart people getting to mix match and upgrade.
Because it’s true. Soldering the memory right next to the CPU allows us to run the memory at a lower voltage and faster clock rate, while getting lower latency too. The LPDDR4/5X are designed based around these improvements. GPUs have been doing this forever too for the same reasons. It’s a huge upgrade in every way except upgradability, which is effectively eliminated.
I'd like to see non-synthetic benchmarks showing real world performance increase in otherwise as close as possible to identical systems