this post was submitted on 21 Nov 2023
0 points (50.0% liked)
Machine Learning
1 readers
1 users here now
Community Rules:
- Be nice. No offensive behavior, insults or attacks: we encourage a diverse community in which members feel safe and have a voice.
- Make your post clear and comprehensive: posts that lack insight or effort will be removed. (ex: questions which are easily googled)
- Beginner or career related questions go elsewhere. This community is focused in discussion of research and new projects that advance the state-of-the-art.
- Limit self-promotion. Comments and posts should be first and foremost about topics of interest to ML observers and practitioners. Limited self-promotion is tolerated, but the sub is not here as merely a source for free advertisement. Such posts will be removed at the discretion of the mods.
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
Determinism in computational models, including binary systems, relies on the ability to reproduce results given the same initial conditions and operations. In a deterministic system, if you run the same sequence of instructions with the same inputs (including the seed for random number generation), you should expect the same output every time, assuming the system is isolated from external non-deterministic factors.
Multithreading introduces non-determinism when threads operate in a shared environment and their execution order affects the outcome. It’s the responsibility of the programmer to manage this through synchronization mechanisms to ensure deterministic behavior if required.
There is also analog and quantum computers. Analog computers work on the principle of approximation and continuous variable manipulation, which can introduce non-deterministic elements due to physical variations. Quantum computers operate on quantum bits (qubits) and can produce non-deterministic results because they exploit quantum superposition and entanglement.
In the context of machine learning models and AI, these principles apply as well. Binary-based AI will be deterministic if the conditions are controlled, while quantum and analog AI might introduce non-deterministic elements by their nature or design for efficiency.