this post was submitted on 22 Nov 2023
1 points (100.0% liked)
Machine Learning
1 readers
1 users here now
Community Rules:
- Be nice. No offensive behavior, insults or attacks: we encourage a diverse community in which members feel safe and have a voice.
- Make your post clear and comprehensive: posts that lack insight or effort will be removed. (ex: questions which are easily googled)
- Beginner or career related questions go elsewhere. This community is focused in discussion of research and new projects that advance the state-of-the-art.
- Limit self-promotion. Comments and posts should be first and foremost about topics of interest to ML observers and practitioners. Limited self-promotion is tolerated, but the sub is not here as merely a source for free advertisement. Such posts will be removed at the discretion of the mods.
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
If you compare the best implementation of FFF on CUDA to the best implementation of FF on CUDA, then the speed-up they got is 3.15x:
See Page 5 Further comparisons: "On GPU, the PyTorch BMM implementation of FFF delivers a 3.15x speedup over the fastest (Native fused) implementation of FF"
The 40x that u/lexected mentioned seems to apply only when comparing to an apparently much slower FF version.
It's a pretty cool paper regardless, as far as I can tell from skimming it. But it could benefit from stating more clearly what has been achieved.