this post was submitted on 23 Nov 2023
1 points (100.0% liked)
Machine Learning
1 readers
1 users here now
Community Rules:
- Be nice. No offensive behavior, insults or attacks: we encourage a diverse community in which members feel safe and have a voice.
- Make your post clear and comprehensive: posts that lack insight or effort will be removed. (ex: questions which are easily googled)
- Beginner or career related questions go elsewhere. This community is focused in discussion of research and new projects that advance the state-of-the-art.
- Limit self-promotion. Comments and posts should be first and foremost about topics of interest to ML observers and practitioners. Limited self-promotion is tolerated, but the sub is not here as merely a source for free advertisement. Such posts will be removed at the discretion of the mods.
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
I strongly recommend training on a GPU, as it speeds up the training process by an order of magnitude and has become the standard. I can recommend services that offer GPU rentals at the lowest prices.
https://vast.ai
https://www.runpod.io
https://www.tensordock.com
Ah, OK- but what about a setup with dual local 3090s?
What kind of gpu rental would you recommend? An a100 80gb?
I apologize, I've confused you. At first, I read RAM and thought that you wanted to train on the CPU.
Of course, 2 x 3090 would be more than enough for training. I believe even a 13B model with a large context length could be trained.
If you have 2 GPUs, I suggest training through the command line and utilizing DeepSpeed or FSDP (which has been tested less).
Here are examples of projects where it's explained in detail how you can train:
https://github.com/BobaZooba/xllm-demo
https://github.com/BobaZooba/wgpt
On Twitter, one person unknown to me posted about how they easily managed to train on multi-gpu (a super simple and short example):
https://twitter.com/darrenangle/status/1724913070105841806
Awesome thank you.
Last question! Would it be reasonable to train on a single 3090 following that guide as well?
Edit: train a 7b on single
It depends on how deeply you want to immerse yourself. The library is intended for both rapid prototyping and production-ready development. I would recommend starting with the former, it's very simple and will take about 10-15 minutes to get started, not including training time.
Here is a notebook that allows you to train models on a single GPU:
https://colab.research.google.com/drive/1CNNB_HPhQ8g7piosdehqWlgA30xoLauP
You can download it and train your model locally on your computer.
Thank you so much, this is awesome.
And feel free to ask! I'm just here to help you