Can someone help me providing the modified code for exporting scale arg
import io
import numpy as np
import onnx
import onnxruntime as ort
import shutil
from PIL import Image
from pathlib import Path
from onnxruntime_extensions.tools.pre_post_processing import *
# NOTE: Currently assumes we're running from the root directory of the Real-ESRGAN repo so the weights and input image
# are loaded using paths relative to that.
_this_dirpath = Path(__file__).parent
def create_onnx_model(onnx_model_path: str):
import torch
from RealESRGAN import RealESRGAN
weights_path = 'weights/RealESRGAN_x4.pth'
if not Path(weights_path).exists():
raise ValueError(f"{weights_path} not found. Please download the RealESRGAN_x4.pth weights as per "
"
https://github.com/ai-forever/Real-ESRGAN/blob/main/weights/README.md
")
device = torch.device('cpu')
esrgan_model = RealESRGAN(device, scale=4)
esrgan_model.load_weights(weights_path, download=True)
# We export the torch model in the RealESRGAN \
model` property`
torch_model = esrgan_model.model
# set the model to inference mode
torch_model.eval()
# Create random input to the model
x = torch.randn(1, 3, 240, 240)
# Export the model
torch.onnx.export(torch_model, # model being run
(x, ), # model input (or a tuple for multiple inputs)
onnx_model_path, # where to save the model (can be a file or file-like object)
export_params=True, # store the trained parameter weights inside the model file
opset_version=15, # the ONNX version to export the model to
do_constant_folding=True, # whether to execute constant folding for optimization
input_names=['input'], # the model's input names
output_names=['output']) # the model's output names
def add_pre_post_processing(input_model_path: str, output_model_path: str):
# we do a Resize with anti-aliasing which requires ONNX opset 18 in onnxruntime version 1.14 or later
from packaging import version
if version.parse(ort.__version__) < version.parse("1.14.0"):
raise ValueError("ONNX Runtime version 1.14 or later required. Please update your onnxruntime python package.")
onnx_opset = 18
model = onnx.load(input_model_path)
inputs = [create_named_value("image", onnx.TensorProto.UINT8, ["num_bytes"])]
# infer the input sizes from the model.
model_input_shape = model.graph.input[0].type.tensor_type.shape
w_in = model_input_shape.dim[-1].dim_value
h_in = model_input_shape.dim[-2].dim_value
pipeline = PrePostProcessor(inputs, onnx_opset)
pipeline.add_pre_processing(
[
ConvertImageToBGR(), # jpg/png image to BGR in HWC layout
ReverseAxis(axis=2, dim_value=3, name="BGR_to_RGB"), # BGR to RGB
Resize((h_in, w_in), layout='HWC'),
CenterCrop(h_in, w_in), # CenterCrop requires HWC
ChannelsLastToChannelsFirst(), # HWC to CHW
ImageBytesToFloat(), # convert to float in range 0..1
Unsqueeze([0]), # add batch dimensions
]
)
pipeline.add_post_processing(
[
Squeeze([0]), # remove batch dimensions
FloatToImageBytes(), # convert back to uint8
Transpose(perms=[1, 2, 0], name="CHW_to_HWC"), # channels first to channels last
ReverseAxis(axis=2, dim_value=3, name="RGB_to_BGR"), # RGB to BGR
ConvertBGRToImage(image_format="png", name="convert_to_png"),
]
)
new_model =
pipeline.run
(model)
onnx.save_model(new_model, output_model_path)
def test_onnx_model(model_path: str):
from onnxruntime_extensions import get_library_path
so = ort.SessionOptions()
so.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_EXTENDED
# register the custom operators for the image decode/encode pre/post processing provided by onnxruntime-extensions
# with onnxruntime. if we do not do this we'll get an error on model load about the operators not being found.
ortext_lib_path = get_library_path()
so.register_custom_ops_library(ortext_lib_path)
inference_session = ort.InferenceSession(model_path, so)
test_image_path = _this_dirpath / 'MauiSuperResolution' / 'Resources' / 'Raw' / 'lr_lion.png'
test_image_bytes = np.fromfile(test_image_path, dtype=np.uint8)
outputs = inference_session.run(['image_out'], {'image': test_image_bytes})
upsized_image_bytes = outputs[0]
original_img =
Image.open
(io.BytesIO(test_image_bytes))
updated_img =
Image.open
(io.BytesIO(upsized_image_bytes))
# centered crop of original to match the area processed
def _center_crop_to_square(img: Image):
if img.height != img.width:
target_size = img.width if img.width < img.height else img.height
w_start = int(np.floor((img.width - target_size) / 2))
w_end = w_start + target_size
h_start = int(np.floor((img.height - target_size) / 2))
h_end = h_start + target_size
return img.crop((w_start, h_start, w_end, h_end))
else:
return img
original_cropped_img = _center_crop_to_square(original_img)
new_width, new_height = updated_img.size
# create a side-by-side image with both.
# resize the original to the model input size followed by the output size so the processing is more equivalent
original_cropped_img = original_cropped_img.resize((240, 240))
resized_orig_img = original_cropped_img.resize((new_width, new_height))
combined =
Image.new
('RGB', (new_width * 2, new_height))
combined.paste(resized_orig_img, (0, 0))
combined.paste(updated_img, (new_width, 0))
combined.show
('Original resized vs Super Resolution resized')
#
combined.save
('Original resized vs Super Resolution resized.png', format='PNG')
def main():
onnx_model_path = Path('RealESRGAN.onnx')
if not onnx_model_path.exists():
print("Creating ONNX model from pytorch model...")
create_onnx_model(str(onnx_model_path))
assert onnx_model_path.exists()
print("Adding pre/post processing to ONNX model...")
output_model_path = str(onnx_model_path).replace(".onnx", "_with_pre_post_processing.onnx")
add_pre_post_processing(str(onnx_model_path), output_model_path)
print("Testing ONNX model with pre/post processing")
test_onnx_model(output_model_path)
print("Copying ONNX model to MAUI applications Resources/Raw directory...")
shutil.copy("RealESRGAN_with_pre_post_processing.onnx",
_this_dirpath / 'MauiSuperResolution' / 'Resources' / 'Raw')
if __name__ == '__main__':
main()
i wanna use custom scale 1,2,3,4 for inferencing it on android
OP can I get a TC?