this post was submitted on 25 Nov 2023
1 points (100.0% liked)
Machine Learning
1 readers
1 users here now
Community Rules:
- Be nice. No offensive behavior, insults or attacks: we encourage a diverse community in which members feel safe and have a voice.
- Make your post clear and comprehensive: posts that lack insight or effort will be removed. (ex: questions which are easily googled)
- Beginner or career related questions go elsewhere. This community is focused in discussion of research and new projects that advance the state-of-the-art.
- Limit self-promotion. Comments and posts should be first and foremost about topics of interest to ML observers and practitioners. Limited self-promotion is tolerated, but the sub is not here as merely a source for free advertisement. Such posts will be removed at the discretion of the mods.
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
As the others said, it's a pain to reimplement common layers in JAX (specifically). PyTorch is much higher level in it's nn API, but personally I despise rewriting the amazing training loop for every implementation. That's why even JAX uses Flax for common layers, because why use an error prone operator like jax.lax.conv_from_dilated or whatever and fill its 10 arguments every time? I would rather use flax.linen.Conv2D or keras_core.layers.Conv2D in my Sequential layer and prevent debugging a million times. For PyTorch, model.fit() can just quickly suffice and later customized.