this post was submitted on 26 Nov 2023
1 points (100.0% liked)

Machine Learning

1 readers
1 users here now

Community Rules:

founded 1 year ago
MODERATORS
 

I'm trying to create an NLP Emotion Classification Model for a research project but kind of confused on where and how to start. I have this huge dataset of Reddit posts and want to classify each post into like 12 different emotion categories.

Is there a way to do this using existing models eg. BERT or can I also do this using unsupervised learning?

I have at least 12000 different posts and so want to avoid supervised learning because its going to take so long to label a set for training data also I might lose a lot of time doing that.

Whats the most efficient and accurate way to do this? Any help would be amazing!

you are viewing a single comment's thread
view the rest of the comments
[–] NoFairYouCheated@alien.top 1 points 11 months ago

You can label a balanced subset and try something like SeTFiT