this post was submitted on 26 Nov 2023
1 points (100.0% liked)
Machine Learning
1 readers
1 users here now
Community Rules:
- Be nice. No offensive behavior, insults or attacks: we encourage a diverse community in which members feel safe and have a voice.
- Make your post clear and comprehensive: posts that lack insight or effort will be removed. (ex: questions which are easily googled)
- Beginner or career related questions go elsewhere. This community is focused in discussion of research and new projects that advance the state-of-the-art.
- Limit self-promotion. Comments and posts should be first and foremost about topics of interest to ML observers and practitioners. Limited self-promotion is tolerated, but the sub is not here as merely a source for free advertisement. Such posts will be removed at the discretion of the mods.
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
Isn't this just the log liklihood of a gamma distribution. I'm not sure I understand the question.
A lack of understanding on my part has lead to poor wording . I'm struggling to understand why the log likelihood used in the code is independent of the shape and scale parameters.
I think I've just figured out my mistake... I was thinking the variance of the modelled residuals would vary with the mean but that's not the correct interpretation