this post was submitted on 26 Nov 2023
1 points (100.0% liked)
Machine Learning
1 readers
1 users here now
Community Rules:
- Be nice. No offensive behavior, insults or attacks: we encourage a diverse community in which members feel safe and have a voice.
- Make your post clear and comprehensive: posts that lack insight or effort will be removed. (ex: questions which are easily googled)
- Beginner or career related questions go elsewhere. This community is focused in discussion of research and new projects that advance the state-of-the-art.
- Limit self-promotion. Comments and posts should be first and foremost about topics of interest to ML observers and practitioners. Limited self-promotion is tolerated, but the sub is not here as merely a source for free advertisement. Such posts will be removed at the discretion of the mods.
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
GANs learn to generate samples in similar ratios as the original data: if there's 10% dogs, there will be 10% dogs in the samples. But they don't work backwards from a dog image to 10%, you might say - they are 'likelihood-free'. They just generate plausible images. They don't know how plausible an existing image is.
In theory, a VAE can tell you this and look at a dog image and say '10% likelihood' and look at a weird pseudoimage and say 'wtf this is like, 0.00000001% likely', and you could use it to eliminate all your pseudoimages. In practice, they don't always work that well for outlier detection and seem to be fragile. So, the advantage of VAEs there may be less compelling than it sounds on a slide.
In theory, can I use the discriminator of the GAN for this?
It will look at a weird picture and say: this looks fake?
Generally, no. What a Discriminator learns seems to be weirder than that. It seems to be closer to 'is this datapoint in the dataset' (the original dataset, not the distribution). You can look at the ranking of a Discriminator over a dataset and this can be useful for finding datapoints to look at more closely, but it's weird: https://gwern.net/face#discriminator-ranking