this post was submitted on 26 Nov 2023
1 points (100.0% liked)
Machine Learning
1 readers
1 users here now
Community Rules:
- Be nice. No offensive behavior, insults or attacks: we encourage a diverse community in which members feel safe and have a voice.
- Make your post clear and comprehensive: posts that lack insight or effort will be removed. (ex: questions which are easily googled)
- Beginner or career related questions go elsewhere. This community is focused in discussion of research and new projects that advance the state-of-the-art.
- Limit self-promotion. Comments and posts should be first and foremost about topics of interest to ML observers and practitioners. Limited self-promotion is tolerated, but the sub is not here as merely a source for free advertisement. Such posts will be removed at the discretion of the mods.
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
GANs are implicit probabilistic models. This means that they do not learn the distribution of data but rather a mapping from a known distribution (standard Gaussian) to the data distribution. As a result, there is no density estimate because it isn't modeling the density.
VAEs, on the other hand, can approximate the density indirectly, since they also do not learn the distribution of the data directly. Rather, it learns an encoder which estimates p(z|x) and a decoder p(x|z). However, using simple probabilistic rules, we can derive p(x) = integral of p(x,z) over z. We break down p(x,z) to p(x|z)p(z). We approximate integral of p(x|z)p(z) dz with the monte carlo approximation via sampling to arrive at an estimate of p(x).