this post was submitted on 26 Nov 2023
1 points (100.0% liked)
Machine Learning
1 readers
1 users here now
Community Rules:
- Be nice. No offensive behavior, insults or attacks: we encourage a diverse community in which members feel safe and have a voice.
- Make your post clear and comprehensive: posts that lack insight or effort will be removed. (ex: questions which are easily googled)
- Beginner or career related questions go elsewhere. This community is focused in discussion of research and new projects that advance the state-of-the-art.
- Limit self-promotion. Comments and posts should be first and foremost about topics of interest to ML observers and practitioners. Limited self-promotion is tolerated, but the sub is not here as merely a source for free advertisement. Such posts will be removed at the discretion of the mods.
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
As others have said, pregnant men, while uncommon, might appear in your dataset. However, for preliminary results, it could make sense to exclude the possibility. Depending on the prevalence and impact of pregnancy in your data, you may be free to drop the column entirely. Some exploratory data analysis should help. Pregnancy should be relatively frequent (>5% of rows, at the very least). Pregnant women should also have noticably different target statistics than non-pregnant women. If pregnancy is rare or doesn't seem to have much of an impact, feel free to drop it altogether for now.
Alternatively, I would default to basic indicator columns for both sex and pregnancy. Just be sure your model doesn't require feature independence, as some do.