this post was submitted on 27 Nov 2023
1 points (100.0% liked)

Machine Learning

1 readers
1 users here now

Community Rules:

founded 1 year ago
MODERATORS
 

Hi everyone,

We have recently written an article on HF’s blog on automatic hallucination detection using inconsistency scoring. The main idea is that hallucinations happen because the task asked at inference is not seen in the training set, which implies low confidence in the next token, therefore, inconsistent samples from the same prompt (https://arxiv.org/abs/2309.13638).

We look at the use of SelfCheckGPT NLI (https://arxiv.org/abs/2303.08896), an example of inconsistency scoring, on WikiBio and found that such a metric has high precision (aka flagged hallucinations indeed are ones) and calibrated recall (high scores = high chance of flagging hallucinations).

https://preview.redd.it/dtptqylv3y2c1.png?width=1189&format=png&auto=webp&s=db623d58e6b24f2f7eee57ff41115f544ee957be

This is quite promising as it could open the way to having AI systems that are more reliable, aka when the task is easy, we let the AI do it. When we detect it’s too hard and the model is hallucinating, we put a human in the loop.

https://i.redd.it/w7p9ciow3y2c1.gif

We have provided:

We conducted these tests as part of our mission to build Confidential and Trustworthy Conversational AI. You can check out our core project, BlindChat, an open-source and Confidential Conversational AI (aka any data sent to our AI remains private, and not even our admins can see your prompts) at https://github.com/mithril-security/blind_chat/

you are viewing a single comment's thread
view the rest of the comments
[–] HerrMozart1@alien.top 1 points 11 months ago

Similar study submitted on openreview INSIDE