this post was submitted on 07 Dec 2023
138 points (96.6% liked)

Canada

7203 readers
374 users here now

What's going on Canada?



Communities


🍁 Meta


πŸ—ΊοΈ Provinces / Territories


πŸ™οΈ Cities / Local Communities


πŸ’ SportsHockey

Football (NFL)

  • List of All Teams: unknown

Football (CFL)

  • List of All Teams: unknown

Baseball

Basketball

Soccer


πŸ’» Universities


πŸ’΅ Finance / Shopping


πŸ—£οΈ Politics


🍁 Social and Culture


Rules

Reminder that the rules for lemmy.ca also apply here. See the sidebar on the homepage:

https://lemmy.ca


founded 3 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
[–] Poutinetown@lemmy.ca 8 points 11 months ago

I admit I did not count the future demand from electric vehicles. When I mentioned that it would cover combustible fuels, I mean in terms of using combustible to produce electricity (e.g. to power home, etc.), not cars.

If you look at the Statistics Canada annual electric power generation tables, you can see that 82/636 TWh is currently nuclear, whereas 119 TWh comes from combustible. That means that tripling nuclear would add 164 TWh, which is 44 TWh more.

Obviously, with EV adoption, as you pointed out, this will not be enough. I agree that increasing Hydro would not really make sense, since a lot of the "good spots" are likely already taken. As for your recommended 100x and 1000x, considering we are currently producing 4TWh of solar energy and 36 TWh of wind, so at respectively 1000x and 100x, that'd be an extra 4000 TWh + 3600 TWh = 7600 Twh, i.e. 10x more than what is produced today. Let's say a Tesla S uses 100 KWh to move 640 km, that is, 100 TWh will go for 640 million km. This means 7600TWh can power 48,640M km, so if we have a population of 50M people, that is 972M km travelled per person in a year.