this post was submitted on 26 Jan 2024
430 points (83.1% liked)
Technology
59219 readers
3320 users here now
This is a most excellent place for technology news and articles.
Our Rules
- Follow the lemmy.world rules.
- Only tech related content.
- Be excellent to each another!
- Mod approved content bots can post up to 10 articles per day.
- Threads asking for personal tech support may be deleted.
- Politics threads may be removed.
- No memes allowed as posts, OK to post as comments.
- Only approved bots from the list below, to ask if your bot can be added please contact us.
- Check for duplicates before posting, duplicates may be removed
Approved Bots
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
It's not as accurate as you'd like it to be. Some issues are:
Also it's not all that novel. People have been doing this with (variational) autoencoders (another class of generative model). This also doesn't have the flaw that you have no easy way to compress new images since an autoencoder is a trained encoder/decoder pair. It's also quite a bit faster than diffusion models when it comes to decoding, but often with a greater decrease in quality.
Most widespread diffusion models even use an autoencoder adjacent architecture to "compress" the input. The actual diffusion model then works in that "compressed data space" called latent space. The generated images are then decompressed before shown to users. Last time I checked, iirc, that compression rate was at around 1/4 to 1/8, but it's been a while, so don't quote me on this number.
edit: fixed some ambiguous wordings.