this post was submitted on 01 Mar 2024
165 points (95.1% liked)
Technology
59377 readers
5324 users here now
This is a most excellent place for technology news and articles.
Our Rules
- Follow the lemmy.world rules.
- Only tech related content.
- Be excellent to each another!
- Mod approved content bots can post up to 10 articles per day.
- Threads asking for personal tech support may be deleted.
- Politics threads may be removed.
- No memes allowed as posts, OK to post as comments.
- Only approved bots from the list below, to ask if your bot can be added please contact us.
- Check for duplicates before posting, duplicates may be removed
Approved Bots
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
Why is this article so agressively angled?
While it's clear the infrastructure isn't there right now, isn't hydrogen in the long term a clearly better alternative than ev's? The biggest problem with EV's being the battery, with all the horrible chemicals that go in to making them.
Shouldn't hydrogen, in the long term, be the obviously greener alternative, or am I missing something?
Hydrogen is incredibly inefficient compared to using electricity directly. You have to first use the electricity to make the hydrogen, this is very inefficient in itself. then you have to "burn" it to drive the vehicle, which wastes most of the energy just like ICE vehicle. So you need several times the initial energy generation to drive a hydrogen vehicle the same distance compared to using electricity directly.
Of course the batteries is then the issue when it comes to EVs, so they're not a magic bullet. But I wouldn't say hydrogen is the obvious better choice either since it is so wasteful with the energy.
Agreed, but 2 important things in my eyes.
1 - renewable surpluses. As wind and solar keep ramping , hydrogen is a fantastic way to store that energy. Sure, there are efficiency losses but it's transportable, able to be stored long term, and able to be used from small scale to grid scale applications.
2 - total life cycle cost. There is an incredible amount of emissions embodied in evs. Haven't seen a comprehensive analysis of a h2 vehicle but I would imagine a few hundred kilos of missing lithium is a good thing.
Grid storage is a genuine problem that needs solving, but there's no particular reason to believe hydrogen is going to be the technology to fill that niche. There are much simpler and more efficient competitors, not least of which being pumped hydroelectricity, but also including exotic technologies like molten salt thermal plants or compressed air mineshafts. And batteries, for that matter; once portability stops being a concern, other battery chemistries start to be an option which don't include lithium at all, like sodium-sulfur.
And even if hydrogen electrolysis does make sense as a grid storage medium, there's no particular reason to think it's a good idea to package up this hydrogen, transport it, and stick it in vehicles to convert into electricity through their own mini power plants. The alternative, where hydrogen is simply stored and converted back into grid electricity on site to meet demand leveling requirements seems far more likely.