this post was submitted on 06 Mar 2024
156 points (94.8% liked)
Climate - truthful information about climate, related activism and politics.
5237 readers
461 users here now
Discussion of climate, how it is changing, activism around that, the politics, and the energy systems change we need in order to stabilize things.
As a starting point, the burning of fossil fuels, and to a lesser extent deforestation and release of methane are responsible for the warming in recent decades:
How much each change to the atmosphere has warmed the world:
Recommended actions to cut greenhouse gas emissions in the near future:
Anti-science, inactivism, and unsupported conspiracy theories are not ok here.
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
If the solar cell wasn't there, most of the energy would have ended up as heat anyway. The sunlight was going to hit that patch of earth whether the panel was there or not. Whereas coal that isn't burnt is avoidable energy release. Photosynthesis efficiency is approximately 3-6%. So panels in total likely release less heat than forest which has an albedo approximately 10-20%. Albeit a forest releases a bunch of the heat in water vapor which drastically decreases the temperature rise from the heat.
A high albedo surface like fresh snowpack would be optimal for avoiding heating, but I doubt panels produce more warming than the average surface they cover.
That's some food for thought. Would a field covered in panels be warmer or cooler than the same field without? On the one hand, the albedo of a panel is super low. That's sort of the point as they don't want any of the sunlight lost. On the other hand, the panels are thin and have little heat retention, so one would expect them to shed whatever heat they build up during the day quickly at night compared to the ground. I suspect the shading effect on the ground would win out in the end, but I'm not sure?
Heat dissipation is an issue for solar panels, to the extent that some have tried deploying floating panels on a lake to get a better cooling effect from the water. Water bodies already have extremely low albedo, so the panels would likely have little effect in that regard. I suppose they might reduce evaporative cooling depending on how thorough the coverage is?
There is also research into materials with radiative cooling properties and whether these can be combined into PV cells. Radiative cooling exploits the infrared transparency of the atmosphere at certain wavelengths that thankfully aren't being blocked by greenhouse gases. I think this is a great idea and could reduce urban heat islands and save energy on A/C in hot climates, essentially for free.
For a person / creature being in the shade will always be cooler, so a field of grass vs solar panels the panels are cooler, now a forest vs solar panels. The forest would likely be cooler, since you get the shade plus the above mentioned moisture release cooling.
Harvard Researcher Ye Tao discussed using mirrors in farm fields for heat management of the soil/earth. He said you get similar results with solar panels, but his focus is combating earth temperature rise which is cheaper to do with mirrors than panels, making them a situationally better idea depending on the needs of a given place. Full interview by David Robberts (Volts) here https://www.volts.wtf/p/volts-podcast-dr-ye-tao-on-a-grand