this post was submitted on 20 May 2024
208 points (94.4% liked)

Technology

59219 readers
3320 users here now

This is a most excellent place for technology news and articles.


Our Rules


  1. Follow the lemmy.world rules.
  2. Only tech related content.
  3. Be excellent to each another!
  4. Mod approved content bots can post up to 10 articles per day.
  5. Threads asking for personal tech support may be deleted.
  6. Politics threads may be removed.
  7. No memes allowed as posts, OK to post as comments.
  8. Only approved bots from the list below, to ask if your bot can be added please contact us.
  9. Check for duplicates before posting, duplicates may be removed

Approved Bots


founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
[–] sunbeam60@lemmy.one 1 points 5 months ago (1 children)

It’s been a while since I’ve coded on the Xbox, but at least in the 360, the memory wasn’t really unified as such. You had 10 MB of EDRAM that formed your render target and then there was specialised functions to copy the EDRAM output to DRAM. So it was still separated and while you could create buffers in main memory that you access in the shaders, at some penalty.

It’s not that unified memory can’t be created, but it’s not the architecture of a PC, where peripheral cards communicate over the PCI bus, with great penalties to touch RAM.

[–] pycorax@lemmy.world 1 points 5 months ago

Well for the current generation consoles they're both x86-64 CPUs with only a single set of GDDR6 memory shared across the CPU and GPU so I'm not sure if you have such a penalty anymore

It’s not that unified memory can’t be created, but it’s not the architecture of a PC, where peripheral cards communicate over the PCI bus, with great penalties to touch RAM.

Are there any tests showing the difference in memory access of x86-64 CPUs with iGPUs compared to ARM chips?