15
this post was submitted on 30 Sep 2024
15 points (100.0% liked)
Ask Electronics
3316 readers
1 users here now
For questions about component-level electronic circuits, tools and equipment.
Rules
1: Be nice.
2: Be on-topic (eg: Electronic, not electrical).
3: No commercial stuff, buying, selling or valuations.
4: Be safe.
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
I don't know how aging affects the LED power draw, according to the manufacturer I shouldn't expect more than 7.5A. When measuring peak power output, I get only get ~6A total though.
4 pins are for earth with each (measured) having ~1.5A going through them at peak brightness. The fifth pin must bear the total load of the four other pins.
Having 5 pins is of course not a strict requirement, it's just the LED strip that has 5 connections.
Edit: I should have clarified that the 4 pins "leading to earth" are connected to mosfets controlled by PWM signals, so they aren't directly connected to earth. Each of the 4 pins carries a unique amount of current. Their total current is flowing through the fifth pin. Sorry for missing out on that detail in the original statement.
If you solder together the ends on the LED you'll only need 2 pins
By soldering the ends of the LED, do you mean the 4 earth connections? I should probably have clarified that the 4 "earth" connections only lead to earth when the mosfets connected to the LED is open. Each connection leading to earth is for either, R, G, B or W so they can't be soldered together.
You could use XT60 connectors and connect together the ground pins
Sorry, my original comment was poorly written. While they do lead to earth, there is a mosfet in between each that receives a unique PWM signal. See the edit for more details.
You could use something like a dsub connector with larger current carrying pins (more expensive) or a more regular connector (e.g. 15 pin dsub) with multiple pins for supply/high current.
Regular rectangular headers can handle anywhere from 1-5A per pin depending on the connector so you might be able to get away with a 2x4 rectangular header (maybe a few more pins in parallel for everything just for insurance)