Interesting. I'm just thinking aloud to understand this.
In this case, the models are looking at a few sequence of bytes in their context and are able to predict the next byte(s) with good accuracy, which allows efficient encoding. Most of our memories are associative, i.e. we associate them with some concept/name/idea. So, do you mean, our brain uses the concept to predict a token which gets decoded in the form of a memory?
Firstly—maybe what we consider an “association” is actually an indicator that our brains are using the same internal tokens to store/compress the memories.
But what I was thinking of specifically is narrative memories: our brains don’t store them frame-by-frame like video, but rather, they probably store only key elements and use their predictive ability to extrapolate the omitted elements on demand.
I wonder if this is actually comparable to the way our brains store long-term memory?
Interesting. I'm just thinking aloud to understand this.
In this case, the models are looking at a few sequence of bytes in their context and are able to predict the next byte(s) with good accuracy, which allows efficient encoding. Most of our memories are associative, i.e. we associate them with some concept/name/idea. So, do you mean, our brain uses the concept to predict a token which gets decoded in the form of a memory?
Firstly—maybe what we consider an “association” is actually an indicator that our brains are using the same internal tokens to store/compress the memories.
But what I was thinking of specifically is narrative memories: our brains don’t store them frame-by-frame like video, but rather, they probably store only key elements and use their predictive ability to extrapolate the omitted elements on demand.
Yes, that makes much more sense.