A new tool lets artists add invisible changes to the pixels in their art before they upload it online so that if it’s scraped into an AI training set, it can cause the resulting model to break in chaotic and unpredictable ways.
The tool, called Nightshade, is intended as a way to fight back against AI companies that use artists’ work to train their models without the creator’s permission.
[...]
Zhao’s team also developed Glaze, a tool that allows artists to “mask” their own personal style to prevent it from being scraped by AI companies. It works in a similar way to Nightshade: by changing the pixels of images in subtle ways that are invisible to the human eye but manipulate machine-learning models to interpret the image as something different from what it actually shows.
Don't worry, it is normal.
People don't understand AI. Probably all articles I have read on it by mainstream media were somehow wrong. It often feels like reading a political journalist discussing about quantum mechanics.
My rule of thumb is: always assume that the articles on AI are wrong. I know it isn't nice, but that's the sad reality. Society is not ready for AI because too few people understand AI. Even AI creators don't fully understand AI (this is why you often hear about "emergent abilities" of models, it means "we really didn't expect it and we don't understand how this happened")
Yeah, I view science/tech articles from sources without a tech background this way too. I expected more from this source given that it's literally MIT Tech Review, much as I'd expect more from other tech/science-focused sources, albeit I'm aware those require scrutiny just as well (e.g. Popular Science, Nature, etc. have spotty records from what I gather).
Also regarding your last point, I'm increasingly convinced AI creators' (or at least their business execs/spokespeople) are trying to have their cake and eat it too in terms of how much they claim to not know/understand how their creations work while also promoting how effective it is. On one hand, they genuinely don't understand some of the results, but on the other, they do know enough of how it works to have an idea of how/why those results came about, however it's to their advantage to pretend they don't insofar as it may mitigate their liability/responsibility should the results lead to collateral damage/legal issues.