this post was submitted on 27 Oct 2023
1 points (100.0% liked)
Machine Learning
1 readers
1 users here now
Community Rules:
- Be nice. No offensive behavior, insults or attacks: we encourage a diverse community in which members feel safe and have a voice.
- Make your post clear and comprehensive: posts that lack insight or effort will be removed. (ex: questions which are easily googled)
- Beginner or career related questions go elsewhere. This community is focused in discussion of research and new projects that advance the state-of-the-art.
- Limit self-promotion. Comments and posts should be first and foremost about topics of interest to ML observers and practitioners. Limited self-promotion is tolerated, but the sub is not here as merely a source for free advertisement. Such posts will be removed at the discretion of the mods.
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
Wasn't this already known? I thought the ConvNeXt paper already showed this a year and a half ago.
This group might have too much TPU credits and don’t know what to with it.
Not necessarily, a maxxed out perfect conditions system could match the newest developing technology. The papers whole point was that of how you use a technique can matter as much as the algorithm itself. Another paper stating this occurred in the world of recommender systems by Google
Yes and no. In my opinion, ConvNeXt is less about data and more about careful architecture design and smart training, and less about data. But yeah, CNNs are better than ViTs if done well, that's true.