this post was submitted on 29 Oct 2023
1 points (100.0% liked)
Machine Learning
1 readers
1 users here now
Community Rules:
- Be nice. No offensive behavior, insults or attacks: we encourage a diverse community in which members feel safe and have a voice.
- Make your post clear and comprehensive: posts that lack insight or effort will be removed. (ex: questions which are easily googled)
- Beginner or career related questions go elsewhere. This community is focused in discussion of research and new projects that advance the state-of-the-art.
- Limit self-promotion. Comments and posts should be first and foremost about topics of interest to ML observers and practitioners. Limited self-promotion is tolerated, but the sub is not here as merely a source for free advertisement. Such posts will be removed at the discretion of the mods.
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
They're probably working on causal inference. When you mention causal inference, I naturally think of causal graphs and linear models (and maybe occasionally random forests), so maybe that's where people get the distinction? One thing in this domain I've worked on (in medium-sized tech) is notifications:
We say that we want to send exactly x notifications per user per day. Then train a model to predict P(DAU | send k notifications that day) and send the notifications that give you the highest P(DAU) uplift.
Some people would probably call this Causal ML; I didn't think about confounders or causal graphs a single time while working on this, so I wouldn't say I was working on causal inference here (I'd just say I was doing ML, but hmm maybe I should update my resume to say "Causal ML"...)