this post was submitted on 02 Nov 2023
1 points (100.0% liked)
Machine Learning
1 readers
1 users here now
Community Rules:
- Be nice. No offensive behavior, insults or attacks: we encourage a diverse community in which members feel safe and have a voice.
- Make your post clear and comprehensive: posts that lack insight or effort will be removed. (ex: questions which are easily googled)
- Beginner or career related questions go elsewhere. This community is focused in discussion of research and new projects that advance the state-of-the-art.
- Limit self-promotion. Comments and posts should be first and foremost about topics of interest to ML observers and practitioners. Limited self-promotion is tolerated, but the sub is not here as merely a source for free advertisement. Such posts will be removed at the discretion of the mods.
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
I use an M1 as my daily driver, which was given to me by work. I used to be hard line anti-mac, but I have been thoroughly converted. I will say though that mps and PyTorch do not seem to go together very well, and I stick to using the cpu when running models locally.
It's good enough to play around with certain models. For example at the moment I'm currently using BERT and T5-large for inference (on different projects) and they run OK. This is generally the case for inference on small to medium language models. However, for training, fine-tuning, or running bigger language models (or vision models), I work on a remote server with a GPU. Access to a Nvidia GPU, whether locally or remotely, is simply a must have for training or bigger models.
For learning and small models, a macbook and Google colab are very sufficient.