this post was submitted on 02 Nov 2023
1 points (100.0% liked)
Machine Learning
1 readers
1 users here now
Community Rules:
- Be nice. No offensive behavior, insults or attacks: we encourage a diverse community in which members feel safe and have a voice.
- Make your post clear and comprehensive: posts that lack insight or effort will be removed. (ex: questions which are easily googled)
- Beginner or career related questions go elsewhere. This community is focused in discussion of research and new projects that advance the state-of-the-art.
- Limit self-promotion. Comments and posts should be first and foremost about topics of interest to ML observers and practitioners. Limited self-promotion is tolerated, but the sub is not here as merely a source for free advertisement. Such posts will be removed at the discretion of the mods.
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
I would not recommend it unless you only focus on smaller models and small experiments. Biggest advantage is the huge amount of memory available. But the bottleneck is memory bandwidth.
We did some tests out of fun (as there were not many benchmarks available). You can find the results here:
https://www.lightly.ai/post/apple-m1-and-m2-performance-for-training-ssl-models
Support got better but back when we did the tests there was still no proper half precision support and also torch.compile wouldn’t work. There is hope that the software support will catch up. I’m curious to see other results. We definitely need more benchmarks :)