this post was submitted on 09 Nov 2023
1 points (100.0% liked)
Machine Learning
1 readers
1 users here now
Community Rules:
- Be nice. No offensive behavior, insults or attacks: we encourage a diverse community in which members feel safe and have a voice.
- Make your post clear and comprehensive: posts that lack insight or effort will be removed. (ex: questions which are easily googled)
- Beginner or career related questions go elsewhere. This community is focused in discussion of research and new projects that advance the state-of-the-art.
- Limit self-promotion. Comments and posts should be first and foremost about topics of interest to ML observers and practitioners. Limited self-promotion is tolerated, but the sub is not here as merely a source for free advertisement. Such posts will be removed at the discretion of the mods.
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
I more so meant that to learn something new the model would have to update its own weights (I have my reasoning for this in another reply in this thread).
When I said “fundamentally unable to” I meant that current LLM architectures do not have the capability to update their own weights (although I probably should’ve worded that a bit differently)
They don't have it because it wasn't programmed into it, because it's risky business (see chatbot Tay), not because it's currently impossible. There's nothing preventing you from running backprop weight updates based on user interactions, e.g. with reinforcement from user sentiment.