this post was submitted on 02 Nov 2023
1 points (100.0% liked)
Machine Learning
1 readers
1 users here now
Community Rules:
- Be nice. No offensive behavior, insults or attacks: we encourage a diverse community in which members feel safe and have a voice.
- Make your post clear and comprehensive: posts that lack insight or effort will be removed. (ex: questions which are easily googled)
- Beginner or career related questions go elsewhere. This community is focused in discussion of research and new projects that advance the state-of-the-art.
- Limit self-promotion. Comments and posts should be first and foremost about topics of interest to ML observers and practitioners. Limited self-promotion is tolerated, but the sub is not here as merely a source for free advertisement. Such posts will be removed at the discretion of the mods.
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
I have something different to say. First I agree that any serious works should be done on a workstation either a packed desktop or cloud server (with a A100 40GB/80GB conf). However, for prototyping or just playing models, mac with its large shared memory is excellent: there is not many laptops or even desktop gpu have more than 16 gb vram, meaning when you prototyping you are very much limited to batch size or smaller sized backbones. I have a m1 pro 32 gb, it can fit most of the models I want to play with. After I finished prototyping, I simply change the "device = 'mps' to 'cuda' and run it on cloud. I use pytorch mainly, i have encountered some issues with mps but nothing major. There are walkarounds.
Oh wow, that's amazing and reassuring xD I was considering m3 pro, but might switch to m2 pro with more ram, ssd, and gpu cores. Depends on my budget. Thank you so much for this!
How many core gpu do you have?