this post was submitted on 14 Nov 2023
1 points (100.0% liked)
Machine Learning
1 readers
1 users here now
Community Rules:
- Be nice. No offensive behavior, insults or attacks: we encourage a diverse community in which members feel safe and have a voice.
- Make your post clear and comprehensive: posts that lack insight or effort will be removed. (ex: questions which are easily googled)
- Beginner or career related questions go elsewhere. This community is focused in discussion of research and new projects that advance the state-of-the-art.
- Limit self-promotion. Comments and posts should be first and foremost about topics of interest to ML observers and practitioners. Limited self-promotion is tolerated, but the sub is not here as merely a source for free advertisement. Such posts will be removed at the discretion of the mods.
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
They definitely can go deeper - with skip connections and normalization you can propagate gradients through any depth of architecture.
Adding more layers isn't free though, it requires more parameters and thus more compute. There's an optimal depth-to-width ratio for a given parameter count.
Exactly the answer I was looking for, thank you!
It becomes very expensive compute-wise, but where we are actually running up to the edge is the scale of the data. They've discovered "scaling laws" (see chinchilla paper) that determines how big your model should be given the amount of data you have. We could go bigger but there's no reason to use a multi-trillion parameter model for example because it's just wasted capacity.