this post was submitted on 17 Nov 2023
1 points (100.0% liked)
Machine Learning
1 readers
1 users here now
Community Rules:
- Be nice. No offensive behavior, insults or attacks: we encourage a diverse community in which members feel safe and have a voice.
- Make your post clear and comprehensive: posts that lack insight or effort will be removed. (ex: questions which are easily googled)
- Beginner or career related questions go elsewhere. This community is focused in discussion of research and new projects that advance the state-of-the-art.
- Limit self-promotion. Comments and posts should be first and foremost about topics of interest to ML observers and practitioners. Limited self-promotion is tolerated, but the sub is not here as merely a source for free advertisement. Such posts will be removed at the discretion of the mods.
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
Traditional casual inference was focused on cases where any confounding was caused by a known set of linear confounders. In this case, straightforward application of linear regression or other GLMs can be used to produce causal estimates. If you have a huge number of potential confounders or if you are worried about non linear terms or interactions between confounders, then those traditional approaches do not work.
Causal ML approaches have worked out the theory to allow you to use flexible machine learning estimators to remove the impact of these other variables so that you can get an unbiased estimate of the causal effect of your treatment variable.