this post was submitted on 19 Nov 2023
1 points (100.0% liked)
Machine Learning
1 readers
1 users here now
Community Rules:
- Be nice. No offensive behavior, insults or attacks: we encourage a diverse community in which members feel safe and have a voice.
- Make your post clear and comprehensive: posts that lack insight or effort will be removed. (ex: questions which are easily googled)
- Beginner or career related questions go elsewhere. This community is focused in discussion of research and new projects that advance the state-of-the-art.
- Limit self-promotion. Comments and posts should be first and foremost about topics of interest to ML observers and practitioners. Limited self-promotion is tolerated, but the sub is not here as merely a source for free advertisement. Such posts will be removed at the discretion of the mods.
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
Go back to your history: Cauchy is the earliest person I'm aware of to have used gradient descent, and he motivated it as
That is, the usefulness of gradient descent is motivated when you have rough idea of when you are close to the minimum, but you don't want to go through the hassle of algebra. (realistically, if you can solve it with gradient descent, you could probably solve it algebraicly, we just don't have the same stupidly easy to implement computational routines for it)
https://www.math.uni-bielefeld.de/documenta/vol-ismp/40_lemarechal-claude.pdf