this post was submitted on 19 Nov 2023
1 points (100.0% liked)
Machine Learning
1 readers
1 users here now
Community Rules:
- Be nice. No offensive behavior, insults or attacks: we encourage a diverse community in which members feel safe and have a voice.
- Make your post clear and comprehensive: posts that lack insight or effort will be removed. (ex: questions which are easily googled)
- Beginner or career related questions go elsewhere. This community is focused in discussion of research and new projects that advance the state-of-the-art.
- Limit self-promotion. Comments and posts should be first and foremost about topics of interest to ML observers and practitioners. Limited self-promotion is tolerated, but the sub is not here as merely a source for free advertisement. Such posts will be removed at the discretion of the mods.
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
I don't think there are books specifically focused on that, and probably there's no need for it. Nonetheless, there's much information scattered throughout papers, but the fundamental concepts to keep in mind are not that many, imho. ReLU is piecewise linear, and the pieces are the two halves of its domain. In one half it is just zero, in the other ReLU(x)=x, so it is very easy and fast to compute. It is enough to make it nonlinear, hence allow powerful expressivity and make a neural network potentially a universal approximator. Many or most activations are nil and that sparsity is useful when it's not always the same set of unit having zero output. The drawbacks are related to the same characteristics: units may die (always output zero, never learning by backprop), there's a point (0) where the derivative is undefined even if the function is continuous, and there's no way to differentiate small and large negative values since they all result in a 0.