this post was submitted on 13 Nov 2023
1 points (100.0% liked)

LocalLLaMA

3 readers
1 users here now

Community to discuss about Llama, the family of large language models created by Meta AI.

founded 1 year ago
MODERATORS
 

I performed an experiment with eight 33-34B models I use for code evaluation and technical assistance, to see what effect GPU power limiting had on the RTX 3090 inference.

All models were gguf, q4 quants. Each model was run only once due to time constraints. Each model was served the identical prompt to generate a bash script according to instructions.

I'll abstain from attempting an analysis, you can draw your own conclusions.

Test data below:

Set Meas GPU% M1 M2 M3 M4 M5 M6 M7 M8 T/s EFFICIENCY

300 291 79,50% 27,26 26,14 33,21 27,54 34,83 32,56 24,58 31,1 29,65 101

280 274 80,50% 26,78 27,18 33,25 27,39 34,19 30,48 26,31 31,34 29,62 108

260 253 81,50% 26,03 23,61 29,91 26,33 31,73 30,48 26,27 30,39 28,09 111

240 233 82,00% 23,71 23,13 31,49 23,64 30,12 29,72 22,5 30,93 26,91 115

220 217 84,50% 19,76 20,04 25,34 19,99 26,89 24,93 22,18 25,06 23,02 106

200 197 87,50% 15,46 14,35 19,86 15,63 20,45 19,56 16,42 19,43 17,65 89

180 179 89,50% 11,39 10,57 14,58 11,03 14,67 14,13 12,32 13,65 12,79 71

160 161 93,00% 7,93 6,79 9,1 7,42 9,45 8,82 7,94 8,78 8,28 51

140 160 95,00% 7,31 6,8 8,9 6,78 9,14 7,52 7,37 8,27 7,76 48

120 160 95,00% 6,81 6,31 8,19 6,97 8,46 7,56 6,93 8,24 7,43 46

M1 51L airoboros-c34b-3.1.2.Q4_K_M.gguf

M2 51L Zephyrus-L1-33B.q4_K_M.gguf

M3 51L codellama-34b-instruct.Q4_0.gguf

M4 51L phind-codellama-34b-v2.Q4_K_M.gguf

M5 51L tora-code-34b-v1.0.Q4_0.gguf

M6 51L wizardcoder-python-34b-v1.0.Q4_0.gguf

M7 64L yi-34b.Q4_K_M.gguf

M8 51L ziya-coding-34b-v1.0.Q4_0.gguf

โ€‹

โ€‹

no comments (yet)
sorted by: hot top controversial new old
there doesn't seem to be anything here