Wait, seriously? That's quite a jump from the last one I heard about.
Also: it's actually 1,121 qubits, even more impressive.
This is a most excellent place for technology news and articles.
Wait, seriously? That's quite a jump from the last one I heard about.
Also: it's actually 1,121 qubits, even more impressive.
Doom port pls, it's the law.
It can play doom and not play doom and be in various stages in between.
You don't know if you're playing DOOM or WOOD until you look
So statistically, on average, it just about plays Doom
This really is amazing to see. It feels like just year when we were discussing 1, 2, or 10 qubits.
Are there any/many current uses for these quantum computers?
breaking encryption algorithms
From what i heard, even 1,000 qubits isn't close to enough for modern passwords: https://www.nature.com/articles/d41586-023-00017-0
Paywall. Also, passwords and RSA are two different things.
Reversing hashing algos is what people mean when they talk about quantum computers cracking passwords / encryption, though.
For now they are only being used for research purposes. For example, simulating Quantum effects in many atom physics and implementing error correction for future quantum computers. Any real applications still need some time but the pace of development is really quite something.
Wasn't there a study that, with the current approach of evaluating an average to break it down to a few finite states, they might never be able to do for what they were developed; cracking passwords?
If by "cracking passwords" you mean reversing password hashes in a database, quantum computers aren't going to make a big dent there. The standard industry ways of doing that wouldn't be affected much by QCs. Breaking encryption, OTOH, with QCs is a concern, but also vastly overrated. It would take orders of magnitude more qubits to pull off than what's been worked on so far, and it may not be feasible to juggle that many qubits in a state of superposition.
I get really annoyed when people focus on breaking encryption with QCs. They are far more interesting and useful than that.
QC can make logistics more efficient. Have you ever seen photos of someone unpacking a giant Amazon box holding one little micro SD card? Amazon isn't dumb about these things, but our best methods of packing an entire truck is a guess. Packing algorithms would take too long to calculate how to perfectly pack it, so they come up with a solution that seems OK, and that leads to a few "filler" boxes that are unnecessarily large, among other inefficiencies. QC can solve this problem without taking the age of the universe to come up with a solution.
The order in which that truck delivers those packages can also be made more efficient with QC.
Then there's molecular simulations, which have the promise of making medications that are more effective, more likely to pass trials, and with fewer side effects. This can be done far faster on a QC.
Damn. I never even finished Q-Bert 1. That game is hard! Are the sequels any better?
If you're on NES, turn the controller 45 degrees to the right. You're welcome.
Wasn’t the controller on the arcade a goddamn roll ball? Ugg
I see you're also in the Ibuprofen demographic.
That hit home, hurts. Take it back.
What's the Ibuprofen demographic? Is Ibuprofen no longer used in the US? It's the go to painkiller here in Germany.
I think it means he’s old enough to take ibuprofen everyday because everything hurts when he wakes up. I too am this many years old.
I was saying that since we're getting older, things ache now. We need ibuprofen to decrease the pains.
"Now we hope to understand in better detail how these works and what to do with them"
It's worth noting that the laser was much the same way. It was described early on as a solution in search of a problem, and lasers have had an incredible impact on technology.
So, web encryption broken when? Now?
It takes about a billion qbits to break 2048bit encryption, so a while. I saw something about reducing it to about 20 million qbits recently, but it's still a while off.
More importantly, how long until I can guarantee a 51% chance of solving every bitcoin block?
Hash functions are not known to be quantum vulnerable (i.e., there's no known quantum algorithm that provides an exponential speedup, best you can do is to use Grover's algorithm to slightly speed up the brute force search). So maybe never.
Great, so when operating systems have finally reached relative stability, the future holds crashes coming from the chipset.
1000? Wasn't that the threshold for breaking RSA crypto, or something?
I think it's closer to 20,000,000 and that is out the Noise Intermediate Scale Quantum computing, meaning modern chips would need to double or quadruple the number of qubits for error detection and error correction in order to run even basic algorithms. That's not to mention that they'd need to be super cooled for up to eight hours and stay in a super position without decoherence into their ground states before performing the Shor's Algorithm.
TL;DR: We need an improvement over 20000x and better tech to break RSA, but this is a good step forward!
So, basically, we're still in the ENIAC stage of quantum computers. They're cool and all, can do some awesome stuff, but are no where near the potential they could be.
How much is that in intel/AMD gigafloppers?
It's actually impossible to do a direct comparison of flops to what I guess we'd call quflops, as the algorithms are not directly comparable. Quantum computers are good at quantum algorithms that can do operations in a single time step that a classical computer couldn't, likewise, to simulate a classical computer on a quantum computer would be very resource intensive.
telegram gotta speed up