The possibility to have your packets passed through a shorter route compared to IPv4 packets is worth it imo. I have 280 ms ping to the US and I can cut it down to ~250ms by routing my traffic via certain countries with vpn. I really hope widespread IPv6 deployment would optimize global internet routing so my latency would improve even if just a few ms so I don't need to use VPN to override my route manually.
Selfhosted
A place to share alternatives to popular online services that can be self-hosted without giving up privacy or locking you into a service you don't control.
Rules:
-
Be civil: we're here to support and learn from one another. Insults won't be tolerated. Flame wars are frowned upon.
-
No spam posting.
-
Posts have to be centered around self-hosting. There are other communities for discussing hardware or home computing. If it's not obvious why your post topic revolves around selfhosting, please include details to make it clear.
-
Don't duplicate the full text of your blog or github here. Just post the link for folks to click.
-
Submission headline should match the article title (don’t cherry-pick information from the title to fit your agenda).
-
No trolling.
Resources:
- selfh.st Newsletter and index of selfhosted software and apps
- awesome-selfhosted software
- awesome-sysadmin resources
- Self-Hosted Podcast from Jupiter Broadcasting
Any issues on the community? Report it using the report flag.
Questions? DM the mods!
Maybe a silly question: any ideas why there are shorter routes using IPv6?
I’m lazy and don’t want to remember more than three digits in an IP address or secure all my devices like they’re publicly routable so I’m sticking with IPv4
Setup mDNS and you don't have to remember IP addresses anymore.
ssh orangeboats@orangeboats-router.local
is thousand times better to memorise.
yes, ill admit i didnt do it myself until recently when I didnt want to do yet-another-nat-entry and decided to join modern networking.
should have done it years ago.
What were the biggest pains? What was surprisingly easier than expected?
There’s a pretty interesting series on the topic at Tall Paul Tech’s YouTube channel (here’s the most recent: https://youtu.be/WFso88w2SiM). He goes into quite a bit of detail over the course of a few videos about how he handled everything and highlights some of the trials and tribulations with the isp. It’s not a guide per se, but definitely stuff worth thinking through.
Definitely dual stack if you do. The real benefit of IPv6 is that, supposedly, each of your internal devices can have its own address and be directly accessible, but I don't think anyone actually wants all of their internal network exposed to the internet. My ISP provides IPv6, but only a single /128 address, so everything still goes through NAT.
Setting it up was definitely a learning process - SLAAC vs DHCP; isc's dhcpd uses all different keywords for 6 vs 4, you have to run 6 and 4 in separate processes. It's definitely doable, but I think the main benefit is the knowledge you gain.
Because devices in your LAN will all be accessible from the internet with IPv6, you need to firewall every device.
It becomes more of a problem for IoT devices which you can't really control. If you can, disable ipv6 for those.
Absolutely. I use ipv6 so I can directly reach all my servers. For public facing things I put it on an ipv4 address but for my own internal stuff, ipv6.
You're asking if you should use it, while my ISP was working on it in 2017 and then it all got canned when they got bought out :( .
Okay, so manu of these answers are just plain wrong. In short, you shouldn't care as the biggest impact will be to network admins. They are the ones who have to configure routing and handle everything else that comes with new addresses. The rest of the world simply doesn't know or notice whether they are using IPv4 or v6. Business as usual.
If the question is whether you should play with it at home. Sure thing if you have the desire to. It's the future and only a matter of time before it becomes a reality. Said network admins and ISPs have been delaying the transition since they are the ones who have to work it out and putting your entire user base behind single IPv4 NAT is simpler than moving everything to IPv6.
From network admin perspective, yes it's worth moving to IPv6 since network topology becomes far simpler with it. Fewer sub-networks, and routing rules to handle those. Less hardware to handle NAT and other stuff. Problem is, they made the bed for themselves and switching to IPv6 becomes harder the more you delay it. Number of users in past 10 years or so has skyrocketed. Easily quadrupled. We use to have home computers with dial-up. Easy enough, assign IP when you connect, release it on disconnect. Then broadband came and everyone is sitting online 100% of the time. Then mobile phones which are also online 100% of the time. Then smart devices, now cars and other devices start having public internet access, etc. As number of users increases, network admins keep adding complexity to their networks to handle them. If you don't have public IP, just do traceroute
and see how many internal network hops you have.
Because devices in your LAN will all be accessible from the internet with IPv6, you need to firewall every device.
It becomes more of a problem for IoT devices which you can't really control. If you can, disable ipv6 for those.