CasualTee

joined 1 year ago
[–] CasualTee@beehaw.org 18 points 3 weeks ago* (last edited 3 weeks ago) (2 children)

the common practice is to relax the dependencies

I found this a bit disturbing

I find that funny that, since this is rust, this is now an issue.

I have not dwelved in packaging in a long while, but I remember that this was already the case for C programs. You need to link against libfoo? It better work with the one the distribution ship with. What do you mean you have not tested all distributions? You better have some tests to catch those elusive ABI/API breakage. And then, you have to rely on user reported errors to figure out that there is an issue.

On one hand, the package maintainer tend to take full ownership and will investigate issues that look like integration issue themselves. On the other hand, your program is in a buggy or non-working state until that's sorted.

And the usual solutions are frown upon. Vendoring the dependencies or static linking? Are you crazy? You're not the one paying for bandwidth and storage. Which is a valid concern, but that just mean we reached a stalemate.

Which is now being broken by

  • slower moving C/C++ projects (though the newer C++ standards did some waves a few years back) which means that even Debian is likely to have a "recent" enough version of your dependencies.
  • flatpack and the likes, which are vendoring everything and the kitchen sink
  • newer languages that static link by default (and some distributions being OK with it)

In other words, we never figured out a proper solution for C projects that will link with a different minor than the one the developer tested.

Well, /rant I guess. The point I'm raising does not seem to be the only one, and maybe far from the main one, for which bcachefs-tools is now orphaned. But I've seen very dubious arguments to try and push back against rust adoption. I feel like people have forgotten where we came from. And while there is no reason to go back per say, any new language that integrate this deep into the system will face similar challenges.

[–] CasualTee@beehaw.org 4 points 1 month ago

It would tend towards centralisation just because of the popularity of certain posters/instances and how scale-free networks behave when they’re not handled another way.

Ah, I get you. That's true.

[–] CasualTee@beehaw.org 2 points 1 month ago (2 children)

making the place less equal, more of a broadcast medium, and less accessible to unconnected individuals and small groups.

I do not think it is a very good analogy. I do not see how this would turn into a broadcast medium. Though I do agree it can feel less accessible and there is a risk of building echo chambers.

How does an instance get into one of these archipelagos if they use allowlists?

By reaching out, I would say. It's most likely a death sentence for one-persone instances. Which is not ideal. On the other hand, I've seen people managing their own instance give up on the idea when they realized how little control they have over what gets replicated on their instance and how much work is required to moderate replies and such. In short, the tooling is not quite there.

[–] CasualTee@beehaw.org 5 points 1 month ago

I think both models (i.e. allowlist/blocklist) have their own perks and drawbacks and are all necessary for a healthy and enjoyable internet.

I would tend to agree. I think both methods have their merits. Though ideally I'd rather have most instances use a blocklist model. This is less cumbersome to the average user and this achieves (in my opinion) one of fediverse goal of having an online identity not tied to an instance, an online identity you can easily migrate (including comments, follow, DMs, ...) if needed.

But the blocklist model is too hard to maintain at this time. There are various initiative to try and make it work, such as fediseer, and it might be good enough for most. But I think it's a trap we should not fall into. On the fediverse, "good enough for most" is not good enough.

Now that people are fleeing to the Fediverse, we’re just gathering our tribe - and this is a natural phenomenon.

I think there is indeed something of that effect going on as well, this is true. But I do not think this warrants a move to allowlist by itself.

I think the move to allowlist is mandated by the fact that building a safe space for "minorities" is hard. The tools to alleviate issues such as harassment and bigotry are not sufficient at this time to keep those communities fully open.

Which is a shame as I think the best way to fight those issues, as a society, is to have people express themselves and have healthy conversation on issues that are rarely brought up.

But we are not entirely giving that up by moving to an archipelago model. It just means that individuals would have multiple accounts, on different archipelago. The downside is that it makes the fediverse less approachable to the average person.

[–] CasualTee@beehaw.org 3 points 1 month ago (2 children)

I think the current technical limitations push us toward this archipelago model.

The thing is, bigotry and racism, to name only two, will exist on any social media, any platform where anyone is free to post something. And since those are societal issue, I don't think it is up to the fediverse to solve. Not all by itself by any means.

What the fediverse can solve however, is to allow instances to protect themselves and their members from such phenomenon. And my limited understanding, as a simple user, is that's it's not possible right now. Not on lemmy nor on Mastodon, if I trust the recent communications around moderation and instance blocking. Not without resorting to allow list.

This is annoying to admit because it goes against the spirit of the fediverse. But the archipelago model is the only sane solution short term IMO. And it will stay that way until the moderation tools make a leap and allow some way to share the load between instances and even between users.

[–] CasualTee@beehaw.org 12 points 1 month ago (1 children)

What a shit show. And if it is confirmed that laptop CPU are also affected, even if to a lower extent, AMD will be the only option on consumer hardware in the coming couple of years. Thankfully, Qualcomm entered the scene recently which should stir up the competition and prevent AMD from resting on its laurels.

[–] CasualTee@beehaw.org 15 points 1 month ago

Enable permissions for KMS capture.

Warning

Capture of most Wayland-based desktop environments will fail unless this step is performed.

Note

cap_sys_admin may as well be root, except you don’t need to be root to run it. It is necessary to allow Sunshine to use KMS capture.

Enable

   sudo setcap cap_sys_admin+p $(readlink -f $(which sunshine))

Disable (for Xorg/X11 only)

   sudo setcap -r $(readlink -f $(which sunshine))

Their install instruction are pretty clear to me. The actual instruction is to run

sudo setcap cap_sys_admin+p $(readlink -f $(which sunshine))

This is vaguely equivalent to setting the setuid bit on programs such as sudo which allows you to run as root. Except that the program does not need to be owned by root. There are also some other subtleties, but as they say, it might as well be the same as running the program directly as root. For the exact details, see here: https://www.man7.org/linux/man-pages/man7/capabilities.7.html and look for CAP_SYS_ADMIN.

In other words, the commands gives all powers to the binary. Which is why it can capture everything.

Using KMS capture seems way overkill for the task I would say. But maybe the wayland protocol was not there yet when this came around or they need every bit of performance they can gain. Seeing the project description, I would guess on the later as a cloud provider would dedicate a machine per user and would then wipe and re-install between two sessions.

 

It looks like it will require a manual review process for now but it could be automated down the line.

[–] CasualTee@beehaw.org 7 points 3 months ago (1 children)

I would not have expected anyone to go to ASUS' office to press the issue. So, good on GN and hopefully will see some long-term results. But seeing how the company has a hard time acknowledging some issues such as the ROG Ally SD card one, I would not hold my breadth.

[–] CasualTee@beehaw.org 2 points 5 months ago

This is what was used by Benjamin to fix David's issue with his XPPen stylus. Here is the mail thread where this was discussed.

It's nice to see it documented now. Hopefully this will extend the support of weird devices such as tablets and game controllers since it should allow user space to "fix" them.

[–] CasualTee@beehaw.org 39 points 1 year ago (4 children)

The reason behind kernel mode/user mode separation is to require all user-land programs to have to go through the kernel to do any modification to the system. In other words, would it not be for syscalls, the only thing a user land program could do would be to burn CPU cycles. And even then, the kernel can still preempt it any time to let other, potentially more important programs, run instead.

So if a program can harm your system from userland, it's because the kernel allowed it, every time. Which is why we currently see a slow move toward sandboxing everything. Basically, the idea of sandboxing is to give the kernel enough information about the running program so that we can tailor which syscalls it can do and with which arguments. For example: you want to prevent an application from accessing the network? Prevent it from allocating sockets through the associated syscall.

The reason for this slow move is historical really: introducing all those protections from the get go would require a lot of development time to start with, but it had to be built unpon non-existant security layers and not break all programs in the process. CPUs were not even powerful enough to waste cycles on such concerns.

Now, to better understand user mode/kernel mode, you have to realize that there are actually more modes than this. I can only speak for the ARM architecture because it's the one I know, but x86 has similar mechanisms. Basically, from the CPU perspective, you have several privilege levels. On x86 those are called rings, on ARM, they're called Exception Level. On ARM, a CPU has up to four of those, EL3 to EL0. They also have names based on their purpose (inherited from ARMv7). So EL3 is firmware level, EL2 is hypervisor, EL1 is system and EL0 is user. A kernel typically run on EL2 and EL1. EL3 is reserved for the firmware/boot process to do the most basic setup, partly required by the other ELs. EL2 is called hypervisor because it allows to have several virtual EL1 (and even EL2). In other words, a kernel running at EL2 can run several other kernels at EL1: this is virtualization and how VMs are implemented. Then you have your kernel/user land separation with most of the kernel (and driver) logic running at EL1 and the user programs running at EL0.

Each level allocates resources for the sub-level (under the form of memory map, as memory maps, which do not necessarily map to RAM, are also used to talk to devices). Would a level try to access a resource (memory address) it has no rights to, an exception would be raised to the upper level, which would then decide what to do: let it through or terminate the program (the later translates to a kernel panic/BSOD when the program in question is the kernel itself or a segmentation fault/bus error for user land programs).

This mechanism is fairly easy to understand with the swap mechanism: the kernel allows your program to access some page in memory when asked through brk or mmap, used by malloc. But then, when the system is under memory pressure, and it turns out your program has not used that memory region for a little while, the kernel swaps it out. Which means your program is now forbidden from accessing this memory. When the program tries to access that memory again, the kernel is informed of the action through a exception raised (unintentionally) by your program. The kernel then swaps back the memory region from disk, allows your program to access the memory region again, and then let the program resume to a state prior to the memory access (that it will then re-attempt without even realizing).

So basically, a level is fully responsible for what a sub-level does. In theory, you could have no protection at all: EL1 (the kernel) could allow EL0 to modify all the memory EL1 has access to (again, those are memory maps, that can also map to devices, not necessarily RAM). In practice, the goal of EL1 is to let nothing through without being involved itself: the program wants to write something on the disk: syscall, wants more memory: syscall, wants to draw something on the screen: syscall, use the network: syscall, talk to another program: syscall.

But the reason is not only security. It is also, and most importantly, abstraction. For example, when talking to a USB device, a user program does not have to know the USB protocol. This is implemented once in the kernel and then userland programs can use that to deal with all the annoying stuff such as timings, buffers, interruptions and so on. So the syscalls were initially designed for that: build a library of functions all user programs can re-use without having to re-implement them, or worse, without having to deal with the specifics of every device/vendor: this is the sole responsibility of the kernel.

So there you have it: a user program cannot harm the computer without going through the kernel first. But the kernel allows it nonetheless because it was not initially designed as a security feature. The security concerns came afterward and were initially implemented with users, which are mostly enough for servers, and where root has nearly as many privileges as the kernel itself (because the kernel allows it). Those are currently being improved under the form of sandboxes, for which the work started a while ago, with every OS (and CPU architecture) having its own implementation. But we are only seeing widespread adoption by userland since fairly recently on desktop. Partly thanks to the push from smartphones where application-level privileges (to access the camera for example) were born AFAIK.

Nowadays, CPUs are powerful enough to even have security features to try to protect a userland program from itself: from buffer overflow, return address manipulation and the like. If you're interested, I recommend you look at the concept of pointer authentication.

[–] CasualTee@beehaw.org 10 points 1 year ago (1 children)

I tried to introduce tests to one of the team I worked at. I was somewhat successful in the end but it took some time and effort.

Basically, I made sure to work with the people interested in testing their code first. It's good to have other people selling testing instead of being the only voice claiming testing will solve ~~all~~ some problems.

Then I made examples: I tried to show that testing some code, believed to be untestable, was actually not that hard.

I was also very clear that testing everything was not the end goal, but, new projects especially, should try and leverage testing. Both as a way to allow for regression testing later on and to improve the design. After all, a test often is the first user of a feature. (This was for internal libraries, I expect it would be a harder sell for GUI where the end design might come from a non programmer such as a UX designer).

At this point, It was seen as a good measure to add a regression tests for most bugs found and fixed.

Also, starting from the high level, while harder (it's difficult to introduce reliable integration and end to end tests), usually yields benefits that are more obvious to most. People are much less nervous reworking a piece of code that has a testing harness, even if they are not in a habit of testing their code.

I did point at bugs that could have been easily prevented by a little bit of testing, without blaming anyone. Once the framework is in place and testing has already caught a couple of mistakes, it's much harder to defend the argument that time spent testing could be better spent elsewhere. And that's where we started to get discussions on the balance to strike between feature work and testing. It felt like a win.

It took two years to get to a point where most people would agree that testing has its uses and most new projects were making use of UT.

 

While not a major breakthrough in terms of computing power, it's crazy to see that CPU can have more cache than desktop PC had hard drive space in the late 90s.

[–] CasualTee@beehaw.org 9 points 1 year ago

I like the idea of aggregating communities. Especially if the modding tools are powerful enough. This could lead to communities being essentially curated lists of other communities. Which is great for new users to discover new communities without being overwhelmed by the unordered list of communities on the instance.

Another feature that I'd like to see is an equivalent to the mastodon's lists, a way to aggregate communities for yourself. So that you could browse the content of communities sharing a same theme in a dedicated view.

view more: next ›