Absolutely not true. Disclaimer, I do work for NVIDIA as a forward deployed AI Engineer/Solutions Architect—meaning I don’t build AI software internally for NVIDIA but I embed with their customers’ engineering teams to help them build their AI software and deploy and run their models on NVIDIA hardware and software. edit: any opinions stated are solely my own, N has a PR office to state any official company opinions.
To state this as simply as possible: I wouldn’t have a job if our customers weren’t seeing tremendous benefit from AI technology. The companies I work with typically are very sensitive to CapX and OpX costs of AI—they self-serve in private clouds. If it doesn’t help them make money (revenue growth) or save money (efficiency), then it’s gone—and so am I. I’ve seen it happen; entire engineering teams laid off because a technology just couldn’t be implemented in a cost-effective way.
LLMs are a small subset of AI and Accelerated-Compute workflows in general.
That’s fair. I see what I see at an engineering and architecture level. You see what you see at the business level.
That said. I stand by my statement because I and most of my colleagues in similar roles get continued, repeated and expanded-scope engagements. Definitely in LLMs and genAI in general especially over the last 3-5 years or so, but definitely not just in LLMs.
“AI” is an incredibly wide and deep field; much more so than the common perception of what it is and does.
Perhaps I’m just not as jaded in my tech career.
Now this is where I push back. I spent the first decade of my tech career doing ops research/industrial engineering (in parallel with process engineering). You’d shit a brick if you knew how much “fudge-factoring” and “completely disconnected from reality—aka we have no fucking clue” assumptions go into the “conventional” models that inform supply-chain analytics, business process engineering, etc. To state that they “never make mistakes” is laughable.