this post was submitted on 26 Feb 2024
169 points (97.2% liked)
Programming
17492 readers
40 users here now
Welcome to the main community in programming.dev! Feel free to post anything relating to programming here!
Cross posting is strongly encouraged in the instance. If you feel your post or another person's post makes sense in another community cross post into it.
Hope you enjoy the instance!
Rules
Rules
- Follow the programming.dev instance rules
- Keep content related to programming in some way
- If you're posting long videos try to add in some form of tldr for those who don't want to watch videos
Wormhole
Follow the wormhole through a path of communities !webdev@programming.dev
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
In cases where bugs have been counted they tended to make up the majority of vulnerabilities. Chrome, Firefox, and Windows reported that around 70% of security vulnerabilites were memory corruption. Yes a subset, but the majority of the worst subset.
I've also heard that unsafe Rust is even more dangerous than C. I guess that's probably something to do with the fact that you're always on your toes in C vs Rust? I don't know. But if you need to do any sort of manual memory management you're going to need unsafe Rust.
No, rust is stricter because you need to think a lot more about whether weird edge cases in your unsafe code can potentially cause UB. For ex. If your data structure relies on the
Ord
interface (which gives you comparison operators and total ordering), and someone implements Ord wrong, you aren't allowed to commit UB still. In C++ land I'd venture to guess most any developer won't care - that's a bug with your code and not the data structure.It's also more strict because rusts referencing rules are a lot harder then C's, since they're all effectively
restrict
by default, and just turning a pointer into a reference for a little bit to call a function means that you have to abide by those restrictions now without the help of the compiler.The thing is the whole c program is unsafe. In rust individual parts are marked unsafe. This means auditing should be easier. Also being always on your toes isn't really viable. Breaking down the program into safe vs unsafe is probably an improvment
Unsafe code should be a very, very small part of any Rust codebase. Lots of major libraries have a policy against including any unsafe code at all, because 99.9% of the time you can do just as well with safe cost. The major exception is when you need to call C code.