this post was submitted on 20 Jun 2023
41 points (100.0% liked)

Technology

37720 readers
657 users here now

A nice place to discuss rumors, happenings, innovations, and challenges in the technology sphere. We also welcome discussions on the intersections of technology and society. If it’s technological news or discussion of technology, it probably belongs here.

Remember the overriding ethos on Beehaw: Be(e) Nice. Each user you encounter here is a person, and should be treated with kindness (even if they’re wrong, or use a Linux distro you don’t like). Personal attacks will not be tolerated.

Subcommunities on Beehaw:


This community's icon was made by Aaron Schneider, under the CC-BY-NC-SA 4.0 license.

founded 2 years ago
MODERATORS
 

Using model-generated content in training causes irreversible defects, a team of researchers says. "The tails of the original content distribution disappears," writes co-author Ross Anderson from the University of Cambridge in a blog post. "Within a few generations, text becomes garbage, as Gaussian distributions converge and may even become delta functions."

Here's is the study: http://web.archive.org/web/20230614184632/https://arxiv.org/abs/2305.17493

you are viewing a single comment's thread
view the rest of the comments
[–] coolin@beehaw.org 2 points 1 year ago (2 children)

This isn't an actual problem. Can you train on post-ChatGPT internet text? No, but you can train on the pre-ChatGPT common crawls, the millions of conversations people have with the models and on audio, video and images. As we improve training techniques and model architectures, we will need even less of this data to train even more performant models.

[–] interolivary@beehaw.org 7 points 1 year ago (1 children)

But then you're training on more and more outdated data

[–] Kerb@discuss.tchncs.de 1 points 1 year ago

Afaik, there are already solution to that.

You first train the data on the outdated but correct data, to establish the correct "thought" patterns.

And then you can train the ai on the fresh but flawed data, without tripping about the mistakes.

I think it’s not a hard stop but it is an issue. I think it will force models to be trained in more novel ways, rather than just purely pump more data in. I think ideally we’d be able to reach GPT level intelligence on fractions of the data and compute. These new techniques have yet to be made but this will put pressure on their creation