this post was submitted on 24 Aug 2024
37 points (63.9% liked)

Technology

59377 readers
5196 users here now

This is a most excellent place for technology news and articles.


Our Rules


  1. Follow the lemmy.world rules.
  2. Only tech related content.
  3. Be excellent to each another!
  4. Mod approved content bots can post up to 10 articles per day.
  5. Threads asking for personal tech support may be deleted.
  6. Politics threads may be removed.
  7. No memes allowed as posts, OK to post as comments.
  8. Only approved bots from the list below, to ask if your bot can be added please contact us.
  9. Check for duplicates before posting, duplicates may be removed

Approved Bots


founded 1 year ago
MODERATORS
 

“An intriguing open question is whether the LLM is actually using its internal model of reality to reason about that reality as it solves the robot navigation problem,” says Rinard. “While our results are consistent with the LLM using the model in this way, our experiments are not designed to answer this next question.”

The paper, "Emergent Representations of Program Semantics in Language Models Trained on Programs" can be found here.

Abstract

We present evidence that language models (LMs) of code can learn to represent the formal semantics of programs, despite being trained only to perform next-token prediction. Specifically, we train a Transformer model on a synthetic corpus of programs written in a domain-specific language for navigating 2D grid world environments. Each program in the corpus is preceded by a (partial) specification in the form of several input-output grid world states. Despite providing no further inductive biases, we find that a probing classifier is able to extract increasingly accurate representations of the unobserved, intermediate grid world states from the LM hidden states over the course of training, suggesting the LM acquires an emergent ability to interpret programs in the formal sense. We also develop a novel interventional baseline that enables us to disambiguate what is represented by the LM as opposed to learned by the probe. We anticipate that this technique may be generally applicable to a broad range of semantic probing experiments. In summary, this paper does not propose any new techniques for training LMs of code, but develops an experimental framework for and provides insights into the acquisition and representation of formal semantics in statistical models of code.

you are viewing a single comment's thread
view the rest of the comments
[–] technocrit@lemmy.dbzer0.com 2 points 2 months ago* (last edited 2 months ago) (1 children)

These techniques will allow students

As someone who understands formal proofs, it's completely misleading to conflate formalism with sketchy pedagogical theories (wtf).

Yes, terminology like "understands" is a choice outside of formalism that's intentionally misleading for the sake of marketing/funding.

[–] Hackworth@lemmy.world 1 points 2 months ago

Genuine question: What evidence would make it seem likely to you that an AI "understands"? These papers are coming at an unyielding rate, so these conversations (regardless of the specifics) will continue. Do you have a test or threshold in mind?