this post was submitted on 01 Jul 2025
457 points (98.7% liked)

Science Memes

15552 readers
5019 users here now

Welcome to c/science_memes @ Mander.xyz!

A place for majestic STEMLORD peacocking, as well as memes about the realities of working in a lab.



Rules

  1. Don't throw mud. Behave like an intellectual and remember the human.
  2. Keep it rooted (on topic).
  3. No spam.
  4. Infographics welcome, get schooled.

This is a science community. We use the Dawkins definition of meme.



Research Committee

Other Mander Communities

Science and Research

Biology and Life Sciences

Physical Sciences

Humanities and Social Sciences

Practical and Applied Sciences

Memes

Miscellaneous

founded 2 years ago
MODERATORS
 
you are viewing a single comment's thread
view the rest of the comments
[–] olafurp@lemmy.world 8 points 1 day ago (7 children)

The thing is that it's legit a fraction and d/dx actually explains what's going on under the hood. People interact with it as an operator because it's mostly looking up common derivatives and using the properties.

Take for example ∫f(x) dx to mean "the sum (∫) of supersmall sections of x (dx) multiplied by the value of x at that point ( f(x) ). This is why there's dx at the end of all integrals.

The same way you can say that the slope at x is tiny f(x) divided by tiny x or d*f(x) / dx or more traditionally (d/dx) * f(x).

[–] kogasa@programming.dev 1 points 1 day ago (6 children)

The other thing is that it's legit not a fraction.

[–] jsomae@lemmy.ml 2 points 1 day ago (5 children)

it's legit a fraction, just the numerator and denominator aren't numbers.

[–] kogasa@programming.dev 1 points 1 day ago (1 children)
[–] jsomae@lemmy.ml 6 points 1 day ago (1 children)

try this on -- Yes 👎

It's a fraction of two infinitesimals. Infinitesimals aren't numbers, however, they have their own algebra and can be manipulated algebraically. It so happens that a fraction of two infinitesimals behaves as a derivative.

[–] kogasa@programming.dev 1 points 1 day ago* (last edited 1 day ago) (1 children)

Ok, but no. Infinitesimal-based foundations for calculus aren't standard and if you try to make this work with differential forms you'll get a convoluted mess that is far less elegant than the actual definitions. It's just not founded on actual math. It's hard for me to argue this with you because it comes down to simply not knowing the definition of a basic concept or having the necessary context to understand why that definition is used instead of others...

[–] jsomae@lemmy.ml 3 points 1 day ago (1 children)

Why would you assume I don't have the context? I have a degree in math. I could be wrong about this, I'm open-minded. By all means, please explain how infinitesimals don't have a consistent algebra.

[–] kogasa@programming.dev 1 points 1 day ago
  1. I also have a masters in math and completed all coursework for a PhD. Infinitesimals never came up because they're not part of standard foundations for analysis. I'd be shocked if they were addressed in any formal capacity in your curriculum, because why would they be? It can be useful to think in terms of infinitesimals for intuition but you should know the difference between intuition and formalism.

  2. I didn't say "infinitesimals don't have a consistent algebra." I'm familiar with NSA and other systems admitting infinitesimal-like objects. I said they're not standard. They aren't.

  3. If you want to use differential forms to define 1D calculus, rather than a NSA/infinitesimal approach, you'll eventually realize some of your definitions are circular, since differential forms themselves are defined with an implicit understanding of basic calculus. You can get around this circular dependence but only by introducing new definitions that are ultimately less elegant than the standard limit-based ones.

load more comments (3 replies)
load more comments (3 replies)
load more comments (3 replies)