this post was submitted on 07 Dec 2025
1063 points (98.1% liked)

Technology

77096 readers
3907 users here now

This is a most excellent place for technology news and articles.


Our Rules


  1. Follow the lemmy.world rules.
  2. Only tech related news or articles.
  3. Be excellent to each other!
  4. Mod approved content bots can post up to 10 articles per day.
  5. Threads asking for personal tech support may be deleted.
  6. Politics threads may be removed.
  7. No memes allowed as posts, OK to post as comments.
  8. Only approved bots from the list below, this includes using AI responses and summaries. To ask if your bot can be added please contact a mod.
  9. Check for duplicates before posting, duplicates may be removed
  10. Accounts 7 days and younger will have their posts automatically removed.

Approved Bots


founded 2 years ago
MODERATORS
 

Just want to clarify, this is not my Substack, I'm just sharing this because I found it insightful.

The author describes himself as a "fractional CTO"(no clue what that means, don't ask me) and advisor. His clients asked him how they could leverage AI. He decided to experience it for himself. From the author(emphasis mine):

I forced myself to use Claude Code exclusively to build a product. Three months. Not a single line of code written by me. I wanted to experience what my clients were considering—100% AI adoption. I needed to know firsthand why that 95% failure rate exists.

I got the product launched. It worked. I was proud of what I’d created. Then came the moment that validated every concern in that MIT study: I needed to make a small change and realized I wasn’t confident I could do it. My own product, built under my direction, and I’d lost confidence in my ability to modify it.

Now when clients ask me about AI adoption, I can tell them exactly what 100% looks like: it looks like failure. Not immediate failure—that’s the trap. Initial metrics look great. You ship faster. You feel productive. Then three months later, you realize nobody actually understands what you’ve built.

you are viewing a single comment's thread
view the rest of the comments
[–] DupaCycki@lemmy.world 9 points 2 days ago

Personally I tried using LLMs for reading error logs and summarizing what's going on. I can say that even with somewhat complex errors, they were almost always right and very helpful. So basically the general consensus of using them as assistants within a narrow scope.

Though it should also be noted that I only did this at work. While it seems to work well, I think I'd still limit such use in personal projects, since I want to keep learning more, and private projects are generally much more enjoyable to work on.

Another interesting use case I can highlight is using a chatbot as documentation when the actual documentation is horrible. However, this only works within the same ecosystem, so for instance Copilot with MS software. Microsoft definitely trained Copilot on its own stuff and it's often considerably more helpful than the docs.