Ask Lemmy
A Fediverse community for open-ended, thought provoking questions
Please don't post about US Politics. If you need to do this, try !politicaldiscussion@lemmy.world
Rules: (interactive)
1) Be nice and; have fun
Doxxing, trolling, sealioning, racism, and toxicity are not welcomed in AskLemmy. Remember what your mother said: if you can't say something nice, don't say anything at all. In addition, the site-wide Lemmy.world terms of service also apply here. Please familiarize yourself with them
2) All posts must end with a '?'
This is sort of like Jeopardy. Please phrase all post titles in the form of a proper question ending with ?
3) No spam
Please do not flood the community with nonsense. Actual suspected spammers will be banned on site. No astroturfing.
4) NSFW is okay, within reason
Just remember to tag posts with either a content warning or a [NSFW] tag. Overtly sexual posts are not allowed, please direct them to either !asklemmyafterdark@lemmy.world or !asklemmynsfw@lemmynsfw.com.
NSFW comments should be restricted to posts tagged [NSFW].
5) This is not a support community.
It is not a place for 'how do I?', type questions.
If you have any questions regarding the site itself or would like to report a community, please direct them to Lemmy.world Support or email info@lemmy.world. For other questions check our partnered communities list, or use the search function.
Reminder: The terms of service apply here too.
Partnered Communities:
Logo design credit goes to: tubbadu
view the rest of the comments
If you had a microscopic object that took up the smallest amount of space physically possible, what shape is it? What shape is a pixel/grain of space?
I think it would not have a shape, or would rather be a zero dimensional point. For it to be any shape, it would have to have features, but you've already defined this as the fundamentally smallest 'thing' so it can't have any features smaller than itself. But you could also probably convince me that it's a sphere. I'm not sure if mathematicians consider a sphere of infinitesimal radius to still be a sphere or not, but treating it as infinitesimal kinda makes sense to me even if it's actually finitely small (the Planck length?)
A more interesting question to me is, assuming positions in space are discrete, which I'm not sure follows from saying there's a smallest possible object, how are those 'voxels' arranged? I don't think that's necessarily equivalent to asking what the shape of the smallest object would be. Pixels on a screen are in a rectangular grid, but the actual elements are circles in some types of screens.
There are a number of shapes besides cubes that can fill 3D space, but do the voxels even have to all be the same shape? Are we even looking for a 3D tiling, or could it be 4D in spacetime, or even higher dimension if it turns out the universe has more than 4 dimensions? Does it have to tile at all, or could it be entirely irregular while still being discrete? Is there any conceivable experiment that could prove any of these things, or is it unknowable?
If it is a sphere then, the question that comes to mind (and may in turn inspire the first question) is, how would they fit together? If you cluster spheres together, you always end up with space between the spheres.
Our Planck length reality voxel isn't made up of physical matter; it's much too small. It's basically just quantum field fluctuations. It probably wouldn't interact with the Higgs field either so stacking them together would be impossible.