this post was submitted on 20 Jul 2024
0 points (NaN% liked)

Asklemmy

43822 readers
1489 users here now

A loosely moderated place to ask open-ended questions

Search asklemmy πŸ”

If your post meets the following criteria, it's welcome here!

  1. Open-ended question
  2. Not offensive: at this point, we do not have the bandwidth to moderate overtly political discussions. Assume best intent and be excellent to each other.
  3. Not regarding using or support for Lemmy: context, see the list of support communities and tools for finding communities below
  4. Not ad nauseam inducing: please make sure it is a question that would be new to most members
  5. An actual topic of discussion

Looking for support?

Looking for a community?

~Icon~ ~by~ ~@Double_A@discuss.tchncs.de~

founded 5 years ago
MODERATORS
top 25 comments
sorted by: hot top controversial new old
[–] ImWaitingForRetcons@lemm.ee 2 points 3 months ago (1 children)

Honestly? A major breakthrough in fusion, or to a lesser extent, any other clean energy. We’ve decarbonised a decent chunk of the world’s energy profile, but there’s a strong financial incentive that politicians are vulnerable to protecting oil and gas, slowing down further decarbonisation. Batteries and supercapacitors also could do the trick.

[–] tyo_ukko@sopuli.xyz 1 points 3 months ago (1 children)

I don't think fusion would be as useful a technology as it would have been a few decades ago. Now renewables (wind, solar, hydro) seem like more and more as the clean and cheap energy of the future. The biggest problem of storage is rapidly being solved with batteries springing up everywhere.

The real problem with fusion is that even if it worked, the plants would be very complex and expensive. It would be much cheaper and reliable to build solar, wind and batteries instead.

Having operational fusion reactors would be cool as hell, but it wouldn't have that much impact on our lives in the end.

[–] Uli@sopuli.xyz 1 points 3 months ago

Respectfully, I disagree. We've entered an AI boom, and right now, the star of the show is in a bit of a gangly awkward teenage phase. But already, these large data models are eating up mountains of energy. We'll certainly make the technology more energy efficient, but we're also going to rely on it more and more as it gets better. Any efficiency gains will be eaten up by AI models many times more complex and numerous than what we have now.

As climate change warms the globe, we're all going to be running our air conditioning more, and nowhere will that be more true than the server centers where we centralize AI. To combat climate change, we may figure out ways of stripping carbon from the air and this will require energy too.

Solar is good. It's meeting much of our need. Wind and hydroelectric fill gaps when solar isn't enough. We have some battery infrastructure for night time and we'll get better at that too. But there will come a point where we reach saturation of available land space.

If we can supplement our energy supply with a technology that requires a relatively small footprint (when it comes to powering a Metropolitan area), can theoretically produce a ton of power, requires resources that are plentiful on Earth like deuterium, and doesn't produce a toxic byproduct, I think we should do everything in our power to make this technology feasible. But I can certainly agree that we should try to get our needs completely met with other renewables in the meantime.

[–] Mothra@mander.xyz 1 points 3 months ago

I second the lemmy saying there is a considerable gap between discovery and implementation.

But to answer your question, I believe we are due some major breakthrough regarding psilocybin and other psychedelic substances which have been banned since the 60s. Research is well underway and with our current technology + knowledge in neuroscience we're due to catch up quickly, unless everything gets tangled in too much red tape.

Improvement in mental health has a pretty immediately impact in our lives after all.

[–] saigot@lemmy.ca 1 points 3 months ago

Solid state batteries are just starting to hit the market but are still fairly comparable to lithium. In theory the mature tech is more energy dense, more thermally stable, charges faster and may be less environmentally damaging.

[–] Diplomjodler3@lemmy.world 1 points 3 months ago (2 children)

Everybody is going to groan, but solid state batteries. That would be a huge sea change, not just for cars, but also air travel.

[–] voracitude@lemmy.world 1 points 3 months ago (1 children)

I have good news for you, then. We're now past the "discovery" phase and we're at the implementation phase with solid state batteries, as you can actually buy production models: https://yoshinopower.com/

[–] Diplomjodler3@lemmy.world 1 points 3 months ago

Yeah but they're not there yet in terms of mass deployment and that's still going to take some more technical breakthroughs. They'll get there eventually but there might be some new discovery any day that would greatly speed up the process.

[–] RarePossum@programming.dev 1 points 3 months ago

I don't know about air travel. For comparison, Li batteries are about 200-300 Wh/kg, with solid state reading 3-4x that.

Jetfuel is 11000 Wh/kg. Hydrogen is 39000 Wh/kg.

By volume they might have an advantage but planes tend to care more about weight

[–] SendMePhotos@lemmy.world 1 points 3 months ago* (last edited 3 months ago) (1 children)

For everyone? Nuclear Fusion is on the cusp of reaching net zero emissions. Meaning we can create massive amounts of clean energy. Right now, we use nuclear energy off of Nuclear Fission creating hazardous waste and resulting in excess heat/waste

Nuclear Fusion would allows us to create clean energy with the goal of being net zero

[–] absGeekNZ@lemmy.nz 1 points 3 months ago

Nuclear Fusion and "net zero emissions" doesn't really make sense.

What I think you are trying to say is that fusion is nearing the point where net energy is possible (that is getting more energy out then the amount of energy put in to create the reactions in the first place). Fusion is not practically close yet, but there are tantalizing hints that we are close.

See this from 2022; the national ignition facility produced more energy that was impacted on the target (2MJ in 3MJ out), but this doesn't take into account the huge inefficiencies in the laser generators to produce that 2MJ laser pulse.

There are a bunch of fusion experiments that are hitting massive temperatures (120 - 150MK) which is starting to get into the range where practical fusion could occur, the center of the sun is approx 15MK but also has massive gravity to encourage fusion.

So fusion is still a decade away at least, but we understand the science much more completely now. We know the problems (well a bunch of them) and it is mostly now a very difficult engineering problem rather a problem of understanding the science.

[–] ChrislyBear@lemmy.world 1 points 3 months ago (1 children)

More efficient or even lossless, sustainable energy storage.

[–] JPAKx4@lemmy.blahaj.zone 1 points 3 months ago (1 children)

Lossless is impossible, as ~~heat is produced and loses energy~~ engineers will always put blinking LEDs on the batteries

[–] BlueAure@infosec.pub 1 points 3 months ago

This is true. You only have to deal once with a device that doesn't have a light or something to realize just how essential indicators are. I have sworn to the electronics gods to never to make a device without at least a power led.

[–] Ziggurat@sh.itjust.works 1 points 3 months ago

A big difficulty is that between the scientific discover, and the application years or even decades can occur. Look at how supra conductor have been known for 100 years and still have very few real life usage.

My thoughts tough

  • Life on Mars. I don't talk about Martian, but if we find remain of bacteria it would be a major breakthrough in biology

-physics beyond the standard model at LHC, no impacts for commoner, but would really help physics to understand our universe

More on technology/applied science

  • Next generation cures against cancer with high efficiency/specificity. I think about targeted alpha therapy and immunotherapy. If these get real, a cancer isn't 6-12 month of painful treatment for followed by a year of recovery, but something a single injection can cure.

  • Male birth control, would give men a better control of their own fertility and give one more option to couple where the woman can't use birth control

  • high temperature supra conductors, by high temperature I mean anything above 100K in normal pressure, high current, high magnetic field. Would allow to use way more super conducting magnet than today. Imagine a world where quenching a MRI doesn't turn off the machine for 3 months.

[–] NONE_dc@lemmy.world 0 points 3 months ago

Room temperature superconductors. Those things are insane, but by now, as far as I know , the only way to create them is with extremely low temperatures.

[–] HumongousChungus@hexbear.net 0 points 3 months ago

attempting to cure microvasculature damage caused by repeat COVID leads to a bigger-dick pill

[–] wheeldawg@sh.itjust.works 0 points 3 months ago (1 children)

A room-temperature superconductor.

[–] mindbleach@sh.itjust.works 1 points 3 months ago

It's gonna be something we slap our foreheads over. Like if you twist the hell out of bronze, or put a microprocessor in a vice.

[–] shinigamiookamiryuu@lemm.ee 0 points 3 months ago (1 children)
[–] MummifiedClient5000@feddit.dk 1 points 3 months ago (1 children)

Yeah... I'm not going to tell intelligent sea mammals where pollution comes from.

[–] Kuori@hexbear.net 1 points 3 months ago* (last edited 3 months ago)

If you don't tell your sea life who's doing the polluting, then transgender communists will.

Please. Talk to your local sea life about pollution.

(Brought to you by the Committee for Orca Attacks)

[–] zelifcam@lemmy.world 0 points 3 months ago (1 children)

Scalable, lab grown meat operations.

[–] cygnus@lemmy.ca 1 points 3 months ago* (last edited 3 months ago)

Came here to say this. The implications for food security would be massive, but it would also have an enormous impact on climate change, cutting GHG emissions by one-third.

[–] mortalic@lemmy.world 0 points 3 months ago

MRNA vaccines for cancer, HIV and others. Moderna clinical trials have been real good.

Imagine getting a cancer diagnosis, then 30 days later getting a tailored treatment that eliminated the cancer.

https://investors.modernatx.com/news/news-details/2022/Moderna-and-Merck-Announce-mRNA-4157V940-an-Investigational-Personalized-mRNA-Cancer-Vaccine-in-Combination-with-KEYTRUDAR-pembrolizumab-Met-Primary-Efficacy-Endpoint-in-Phase-2b-KEYNOTE-942-Trial/default.aspx

Also vote. Because one party system has decided to side with anti vaxxers. The other has not. Cancer numbers have been steadily rising, second only to heart disease as a cause of death. There is a solid chance you're going to get cancer.